膜分离技术在电镀废水零排放上的应用
摘要:通过对电镀废水零排放工程实例的分析,论述了膜分离技术的应用特点及适应性。
关键词:电镀废水;零排放;膜分离技术
近年来,随着国家对电镀行业清洁生产水平要求的提高,以及一些地方政策法规的新要求,电镀企业实行废水零排放已成为新时代发展的趋势。因此,膜分离技术在电镀废水零排放上得到了广泛的应用,并取得成效。本文结合广州市番禺区的一个工程实例,介绍了膜分离技术在电镀废水零排放上的应用情况,分析了其技术经济的可行性,并总结了膜分离技术应用于电镀废水零排放上的特点。
1 电镀废水零排放的实现方式以及膜处理系统的原理
1.1 电镀废水零排放的实现方式
广州市番禺区某企业主要进行镀锌生产,整改前日排电镀废水150吨。2005年11月,广州市番禺区环保局对几家电镀厂下达了限期整改的文件,要求电镀企业对废水处理系统进行整改,并实现电镀废水的零排放。该企业委托有关环保公司进行了改造设计,实现了电镀废水的零排放。该工程实现电镀废水零排放主要是采取了以下几点措施:
(1)首先要求企业对生产进行调整及改善,节约用水并提高生产用水的循环利用率,对各类废水进行分流预处理,尽可能减少废水的末端治理量;
(2)对现有的废水处理系统进行整改,废水处理系统采用的是传统的化学沉淀工艺,技术可行,但由于处理系统运行多年,需更新设备并进一步提高自动化程度;
(3)新建电镀废水回用系统,让达到排放标准的废水再经过回用系统处理,重新回用于电镀生产线。针对生产上的节约用水,该企业采取了有效的措施,如调整好镀槽与冲洗池的位置;将镀槽的浓度调整到最合适的水平;采用逆流冲洗及喷淋冲洗的方式;将处理后达到排放标准的废水直接回用到前处理生产单元等。通过这一系列的措施,电镀废水的排放量可减少33%。此外,通过废水处理系统的整改,废水的处理效果能保证稳定达标。因此,工作的重点落在回用处理系统的设计及实施上。
1.2 膜处理系统原理
针对要将达到排放标准的电镀废水处理至可作为电镀工艺用水的水质,回用处理系统采用了膜分离技术,该系统的工艺流程如下图所示。
回用处理系统的核心是RO(反渗透)处理单元,该单元的处理原理是在压力的驱动下,使废水中的水从反渗透膜中透过成为可回用的水,而不能透过的盐分及少量的有机物将保留在浓缩液中。为减轻反渗透单元的处理压力,在反渗透处理前增加了超滤单元,超滤能截留0.002~0.1微米的颗粒和杂质,能有效阻挡住胶体、蛋白质、微生物和大分子有机物。为了避免废水中所含的杂质污染膜元件,影响系统的稳定运行和膜元件的使用寿命,必须对进水进行有效的预处理。因此,处理系统增加了砂滤器、活性炭吸附器、叠片过滤器、保安过滤器等预处理单元,并适当投加了阻垢剂、消毒剂、除氯剂。反渗透单元中不能透过的浓缩液将进入到离子交换系统,脱盐后的水将回用至生产线上。各处理单元的清洗废水将作为原水回流到电镀废水处理系统中进行处理。
2 膜分离技术在电镀废水回用处理中的应用特点及注意事项
2.1 进水水质特点
回用处理系统的进水来自于废水处理系统的出水,COD值一般在50~80mg/L之间,超出了RO处理单元的正常处理水平,因此,必须在RO处理单元前对废水进行预处理,使COD值降至30mg/L以下的水平;另外,进水中会残留有少量的胶体颗粒,这些胶体会对超滤膜和RO膜造成严重的堵塞,因此必须通过预处理将这些胶体去除;此外,由于废水处理中加入了酸、碱、盐等化学药剂,因此,回用进水中所含的金属离子较多,电导率也会较高,若所加的是石灰或钙盐,则回用处理过程中会产生严重的结垢现象;若废水需进行破氰处理,则处理后的出水将可能含有次氯酸根等氧化性物质,对RO膜会产生严重的破坏作用。针对以上进水水质的特点,反渗透系统必须采取有效的预处理措施,才能保证取得良好的处理效果,并能长期稳定运行。
2.2 预处理措施
对于废水中的胶体和颗粒物,预处理采用了砂滤器及叠片过滤器。砂滤器的过滤介质为粒径0.5~0.8mm的石英砂,能去除粒径为100μm以上的颗粒,使浊度达到1左右。叠片过滤器是通过一系列刻有大量一定微米尺寸沟槽的叠片在弹簧和流体压力的作用下被压紧,从而形成独特的深层过滤,能有效截留前级砂滤器截留不了的细颗粒悬浮物,过滤精度为55μm。设置活性炭吸附器能有效去除废水中的游离氯,保护反渗透膜不受损害,同时也可以吸附水中的有机物、胶体粒子等。活性炭的粒度为1.25~2.5mm,层厚为1.5~2.0m。为了防止在膜面上发生无机盐结垢,可在水中投加阻垢剂,阻垢剂一般选用有机磷酸盐,其处理效果比六偏磷酸钠更好更稳定,适用于防止不溶性的铝和铁的化合物结垢。对于去除废水中氧化性物质,可以在水中投加还原剂,一般选用亚硫酸氢钠。
2.3 RO膜的选材及设计
针对电镀废水的特点,应用于电镀废水回用处理的RO膜应选用抗污染型膜元件。抗污染型膜元件是卷式芳香族聚酰胺复合膜元件,具有低压运行、产水量高、脱盐性能好的特点,同时由于采用特殊工艺对膜表面进行处理,改变了膜表面的电荷性及光滑度,增加了膜表面的亲水性,从而减小了污染物及微生物在膜表面的污染。在设计上,要根据产水流量、回收率以及产水水质,确定系统串联元件数、段数及级数。为保证产水水质以及延长膜元件的使用寿命,设计过水通量一般比膜元件的额定过水通量要低20%~30%。因此,虽然首次的投资会稍高,但却能保证膜处理系统长期稳定的运行,并降低运行费用。本工程实例中,为实现70%的系统回收率,选取了一级两段式的RO系统,两段压力容器的数量之比为2∶1,这样就可以避免因进入第二段膜元件的水流降低而产生膜表面沉积的现象。
2.4 膜处理系统的运行及注意事项
膜处理系统在正常的运行条件下能取得很好的效果,但须注意以下方面:
(1)保证进水水质优于排放标准
根据所选定的处理工艺流程,膜处理系统的进水水质必须优于所要求的废水排放标准,主要指标要求如下:COD≤80mg/L;浊度≤3度;电导率≤2000us/cm;pH=6~8。
这里要求前续的废水处理必须做到适量的投药,反应、沉淀处理单元必须有足够的停留时间,从而可避免不必要的胶体颗粒的产生,降低出水的COD及浊度。废水处理的排放标准中要求pH为6~9,但RO最优的pH范围为6~8,因此必须将废水处理出水的pH值调至8以下。另外,降低进水pH值是控制碳酸钙沉淀析出的一种有效手段。
(2)关键部位要实时监测,并做好运行记录
要能及时反映膜处理系统的运行状况,必须在关键部位安装监测仪器,进行实时监测,以取得关键的控制参数。
整个膜处理系统的控制参数主要有:温度、浊度、余氯、pH、压力、流量、电导率等。特别是进出水压力、流量、电导率,这三个参数能及时反映膜元件的处理状况,可判别是否有故障问题,从而及时采取措施解决。一般来说,膜处理系统在稳定运行一段时间后若出现产水量下降、脱盐率降低、压降增加的现象,应加以重视并分析原因。造成以上现象的原因主要有结垢、污堵、氧化破坏、泄漏等,可采取清洗、消毒、维修、更换膜元件等措施解决。做好日常的运行记录,就能掌握膜处理系统运行的规律,将系统调整在最佳的运行状态,并能及时采取预防性的维护,防止发生重大问题而影响生产。
(3)做好清洗工作
膜处理系统在经过一段时间的运行后,其性能便会逐渐下降。当系统产水量比初始值下降15%以上、盐透过率增加10%以上、进水与浓水之间的压差增加15%以上时,便要及时进行化学清洗。
清洗的步骤一般为:1)用产水低压冲洗;2)用清洗液低压低流量冲洗;3)用清洗液浸泡;4)用清洗液大流量循环清洗;5)用产水冲洗,清除清洗液。对于电镀废水的回用处理,通常会出现无机胶体污染状况,此时RO膜的第一段会出现产水量逐渐下降、压差逐渐变大、产水电导轻微上升的现象。对于此种污染,可以用0.1%的氢氧化钠与十二烷基苯磺酸钠配成清洗液,按照前述步骤进行清洗。
3 效益分析
该镀锌生产企业于2006年4月建成电镀废水回用处理系统并投入运行,采用超滤+RO膜处理系统。系统至今一直能保持稳定运行,效果良好。
3.1 投入及成本分析
通过工程整改及采取一系列的节水措施,最后需进行回用处理的电镀废水量可减至100吨/日。因此,膜处理系统的处理规模为100吨/日,系统总投资为45万元。吨水处理成本为4.08元/吨,其中电力消耗2.92元/吨、换膜成本0.45元/吨、清洗成本0.21元/吨、维修费0.05元/吨。
3.2 效益分析
(1)经济效益
总经济收益为4.43元/吨。其中,节约用水收益为1.83元/吨(仅以自来水水价计,未含制成纯水的费用);纯水制作收益2.25元/吨(以处理量计算),节省排污费收益0.35元/吨(按达标排放收费计算)。
(2)社会环境效益
实现了电镀废水的零排放或微排放,减少了对水环境的污染,改善了水环境的质量。膜分离系统的透过液具有水质稳定并高于电镀行业工艺用水要求的特点,可直接回用于电镀生产,因而构建了一种基于资源回收和环境保护的可持续发展环保新模式。
4 结论
膜分离技术在我国已发展多年,技术相当成熟,特别在海水淡化、纯水生产等方面应用得比较多,但在污水处理方面却应用得比较少。目前,面对日益严重的环境污染问题,作为当今我国三大污染工业之一的电镀行业,企业实施清洁生产,是在越来越大的环境压力下,实现电镀企业可持续发展的重要举措。
膜分离技术是一门崭新的跨学科实用化技术,被公认为是21世纪最有发展前途的高新技术之一。近年来,随着国家关于环境保护的法律法规的健全、环保执法力度的进一步加大以及企业清洁生产的推行,膜分离技术在电镀行业废水回用处理上逐渐得到广泛的应用,并取得了实践成果,膜分离技术的实践应用也得到了改善与提高,作为电镀企业实现电镀废水循环利用、清洁生产的有效手段,具有十分广阔的发展前景。
使用微信“扫一扫”功能添加“谷腾环保网”