废水处理新技术 生物活性炭工艺原理
生物活性炭工艺是20世纪80年代发展起来的废水处理技术,多应用于微污染水源预处理及工业废水深度处理,以去除水中难降解有机物。钢铁工业废水经常规工艺处理后,还残留部分有机物和铁、锰,不能达到污水回用的水质标准。研究生物活性炭工艺在钢铁工业废水深度处理中的应用,分析其对污染物,尤其是对铁、锰的去除效果,形成生物活性炭深度处理钢铁工业废水工艺,对回用钢铁工业废水、降低钢铁工业水耗有着实用意义。
1生物活性炭工艺原理
生物活性炭工艺主要是将活性炭作为微生物聚集、繁殖生长的良好载体,在适当的温度及营养条件下,发挥活性炭的物理吸附和微生物生物降解作用。当废水充氧条件较好时,废水中的污染物被活性炭吸附,被吸附的有机物又为维持炭粒表面及孔隙中微生物的生命活动提供了营养物质,好氧微生物在活性炭表面及孔隙中繁殖生长,逐渐形成生物膜。由于活性炭上的生物膜对吸附的污染物持续的生物降解作用,使活性炭得到生物再生。
2材料与方法
2.1试验原水
试验原水取自某大型钢铁企业内围厂河。围厂河以接纳该企业内各生产部门处理后达标排放的工业废水为主,还包括厂区内的雨水及部分生活污水。试验期问围厂河水质变化情况及回用水质标准见表1,COD、氨氮和总磷均已达到《城市污水再生利用工业用水水质》(GB/T19923--2005)循环冷却水系统补充水水质要求。
钢铁工业生产过程中含有铁、锰离子的颗粒物进入水体,经常规物化或生化处理系统处理后,出水水质虽达到国家《污水综合排放标准》(GB8978-1996)的要求,但相对回用水质,铁、锰含量和浊度仍较高。废水回用中,铁、锰细菌可利用其作为营养源生长繁殖产生生物黏泥,腐蚀水管壁,严重时甚至堵塞水管,影响回用水系统的正常运行。由表1见,试验原水浊度及铁、锰均超过GB/T19923-2005循环冷却水系统补充水水质标准。因此,对于达标排放的钢铁工业废水,浊度、铁、锰是深度处理的主要控制指标。
2.2试验装置及工艺流程
试验装置主体为生物活性炭滤柱(以下简称滤柱),工艺流程示意图见图1。滤柱为有机玻璃材质,内径150mm,柱高2400mm,柱底装填100mm的砾石作为承托层,生物活性炭层高1200mm,填料采用1mm×4mm的柱状活性炭。
2.3运行参数
滤柱采用自然挂膜方式,废水水温为25~30℃。生物膜培养期内,滤速过高易对尚未成熟的生物膜产生冲刷,不利于炭粒表面生物膜的形成,故挂膜期问控制滤柱滤速1.2m/h左右,空床停留时间60rain。
生物膜培养成熟后稳定运行,采用下向流运行方式,原水由进水箱经计量泵加压至滤柱顶部,跌水曝气进入滤柱。整个试验期内,滤柱在2种不同工况下运行:工况1为滤柱滤速1.6m/h,空床停留时间45rain;工况2为滤柱滤速2.4m/h,空床停留时间30rain。
滤柱运行过程中,炭粒表面老化的生物膜及滤层中累积的颗粒物影响滤柱出水水质和产水量,合理的反冲洗是滤柱正常运行的保障。试验过程中,滤柱反冲洗周期根据水头损失及出水水质判断,滤柱平均每隔4~5d反冲洗一次,冲洗方式采用单独水冲,反冲洗历时6~8rain,膨胀率209/6~309/6。
2.4分析项目和方法
分析项目主要有浊度、铁、锰、COD、氨氮和总磷。浊度采用分光光度法测定,铁采用邻菲哕啉分光光度法测定,锰采用高碘酸钾氧化-分光光度法测定,COD采用重铬酸钾法测定,氨氮采用纳氏试剂分光光度法测定,总磷采用钼酸铵分光光度法测定。
3结论
(1)较高的水温有利于生物活性炭生物膜的形成与成熟。实验条件下,滤柱采用自然挂膜的方式,21d挂膜成功。
(2)生物活性炭工艺对钢铁工业废水中浊度、有机物及氮、磷等营养物质都有较好的去除效果,在停留时间为45min的运行工况下,浊度、COD、氨氮和总磷的平均去除率分别达90%、55%、84%和44%。
(3)经过富含铁、锰废水的长时间过滤,活性炭填料表面形成的包括铁、锰氧化细菌在内的生物群系,对钢铁工业废水中的铁、锰有较好的去除效果。在滤柱滤速为1.6m/h、停留时间为45min的运行工况下,铁、锰平均去除率超过78%,基本达到GB/T19923-2005循环冷却水系统补充水水质要求。
(4)生物活性炭工艺设备简单,占地面积小,运行管理方便,在实现钢铁工业废水回用的深度处理中有应用发展前景。
使用微信“扫一扫”功能添加“谷腾环保网”